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I. INTRODUCTION 

A. Purpose of the Experiment 

The theory of radiation effects in solids is in its 

infancy» Current theories are being tested experimentally 

as rapidly as the development of experimental techniques 

allows. The intent of this thesis is to add to the knowledge 

of the physical properties of bismuth, to introduce and to 

apply a technique which will gain additional information 

from existing data, and to provide a means of correlation 

between theory and experiment. 

Shortly after nuclear reactors provided researchers with 

a neutron flux of a high order of magnitude, as cited in 

Seitz (1), E. P. Wigner suggested that such concentrations 

could possibly damage solids and alter their physical proper­

ties. A study of possible radiation effects was then made, 

and the theory of radiation effects began to emerge. Re­

searchers began publishing results concerning radiation ef­

fects on the physical properties of a great variety of 

materials. These data were published without knowledge of 

the neutron and gamma flux spectra in the vicinity of the 

experiment, without statement of the impurity concentrations 

in the material, without determination of the crystal size, 

and, in some cases, without reference to the temperature 

variation and control. Because of this and the fact that 



www.manaraa.com

2 

these materials were irradiated in many different reactors 

with different means of signifying radiation amounts and with 

no special consideration given to the saturation point, which 

is dependent upon the magnitude of the flux, it is under­

standable that much of the present data appears inconsistent. 

Reliable data are available today through research done 

with instruments which provide monoenergetic particles. 

However, such particle sources normally do not have the high 

flux levels which are available from nuclear reactors. There 

is a need for an accurate method of determining the neutron 

and gamma flux spectra at the test specimen within a reactor 

before the nuclear reactor can fulfill the original expec­

tations for its use as a research tool. When the neutron and 

gamma flux spectra at the test specimen have been determined, 

the irradiation data from the various reactors can be more 

realistically compared. 

A new foil technique is being developed which will de­

termine the neutron flux spectra at the irradiation site. 

This foil technique was used to determine an approximate 

spectra which was then used in the theoretical calculations 

for estimating the magnitude of the production rate of various 

irradiation effects. 

Each type of radiation effect has an energy threshold 

for formation as well as an activation energy for annealing. 

This difference in annealing activation energy suggests that 
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the effects will decay out at different rates. The experi­

mental procedure is to monitor the electrical resistivity 

change during annealing, and then plot the data on semilog 

paper. When this is done in the manner used for radioactive 

decay processes, it is seen that distinct half lives are 

present revealing the relative effect of each type of pro­

cess upon the electrical resistivity. 

This procedure is contrasted with that normally used 

where the temperature is raised at a controlled rate. Both 

methods reveal certain thresholds. However, the technique 

used in this experiment appears to give a more distinct 

picture of the individual processes influencing the magni­

tude of the electrical resistance. 

B. Known Properties of Bismuth 

Bismuth is a brittle semi-metal which is usually de­

scribed as tin white in color but with a distinct reddish 

tinge and a high luster. It is the third member of the ar­

senic, antimony, bismuth subgroup of the fifth group of the 

periodic table. Bismuth has the highest density of the three 

members of its subgroup. It has the atomic number 83, the 

next in order above lead, and an atomic weight of 209- The 

bismuth lattice can be described in two ways, either as a 

lattice in which the rhombohedral angle is nearly 90°» the 

unit cell containing eight atoms, or as a rhombohedral 

lattice with an angle which is 57° 16*, the unit cell 
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containing two atoms. The atoms are arranged in doable 

layers, each atom having three nearest neighbors at a dis­

tance 3»11 angstroms and three next nearest neighbors at the 

greater distance of 3*47 angstroms. The lattice constant a 

is 4»74 angstroms. 

The density of bismuth is 9*8 grams per cm^ at 20° C 

and 10.067 grams per cm^ at its melting point of 277° C. The 

expansion of the metal during solidification amounts to 3.32 

percent of its volume at its melting point. 

Bismuth has a valence of five. These five electrons are 

capable of filling a Brillouin zone. However, it is held that 

the comparative smallness of the energy discontinuities at the 

zone boundaries allows some of the electrons to overlap into 

the next zone, leaving a number of holes in the almost filled 

band. Quantitative calculations of the energy discontinuities 

are lacking since the precise band structure of bismuth is not 

known. The number of electrons which are free is so small 

that it cam be altered appreciably by the addition of suitable 

impurities. When small quantities of selenium are added to 

bismuth, the resistivity initially drops and then increases 

with a steep curve as the impurity concentration nears one 

percent. An impurity such as lead or tin causes the resis­

tivity to increase with a very sharp curve initially, and 

then to flatten out between one and two percent impurity 

concentration. 
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Wilson (2) has analyzed the effect of impurities on 

single bismuth crystals in the following manner. When lead 

is added as an impurity, there is a certain concentration 

that will cause a maximum in the resistivity versus tempera­

ture curve. Lead has fewer valency electrons than bismuth. 

Thus, when lead is added as the impurity it reduces the num­

ber of electrons in the upper Brillouin zone. A sufficient 

amount of lead will eliminate the number of electrons in the 

upper Brillouin zone, but will leave some vacant levels in the 

lower zone. This alloy behaves normally at low temperature, 

but at higher temperature electrons are excited into the 

upper zone, thereby decreasing the resistivity. Experiments 

on single crystals to which the lead impurity was added 

demonstrated that 0.1 percent of lead is sufficient to pro­

duce a maximum in ^ while one percent is required to produce 

a maximum in . This means that approximately 0.7 percent 

lead impurity would be required to produce the maximum in 

polysrystalline bismuth. 

On the other hand, selenium has more than five valency 

electrons. Thus, the extra electrons go into the upper zone 

increasing the conductivity. As more selenium is added, the 

holes again fill and the conductivity decreases. 
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II. LITERATURE REVIEW 

The literature covers almost all phases of radiation 

effects in materials. Practically all materials, including 

many alloys of metals, have been subjected to some form of 

radiation study. However, as mentioned previously, the 

amount of this mass of information that has been gathered 

under controlled or known conditions is very small. Since 

there is such a hugh accumulation of information, a number of 

very good review articles are available. 

References (1), (3)» and (4) cover the period through 

1957» Almost all the important publications are listed in 

these works. Reference (1) is an article which covers quite 

thoroughly the theory and the experimental work which took 

place before 1956. The fourth reference is a text that 

carries the theory on through 1957- This book consists of 

six chapters dealing with the various aspects of radiation 

effects in solids, and lists as many as 120 references, pa­

pers and books, at the end of each chapter. The period from 

1957 to date has been covered in an article by Brooks (5)» 

The present interpretation of the changes in the proper­

ties of solids brought about by high energy radiation centers 

about the production of several types of defects in the solid. 

These defects are vacancies, interstitial atoms, and impurity 

atoms. In addition to these defects there are replacement 

collisions, thermal and displacement spikes, and ionization 
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effects. 

The formal theory of displacement production was first 

published in 1948 by Bohr (6) in the classified literature. 

Seitz and others pursued the theory in the unclassified 

literature for the next several years. Several models for 

displacement and interstitial formation were proposed. Then, 

in 1955» two mathematical models were presented which are to­

day considered to be probably near the correct answer. The 

first was by Snyder and Neuf eld (7) who gave a mathematical 

procedure for determining the number of vacant lattice sites 

or interstitial atoms in a monoatomic solid. This model fol­

lowed the formal treatment of Bohr, and presented a solution 

obtained after utilizing many complex mathematical theories. 

The second model was presented by Kinchin and Pease (3). The 

fundamental difference between the two models is that the 

Kinchin and Pease model assumes that a struck atom is not re­

quired to climb out of a potential well before being in a 

position to make displacing collisions with other atoms. On 

the other hand, Snyder and Neufeld assume that the atom loses 

energy before moving off through the lattice to make other 

displacements. The Kinchin and Pease model also differs by 

taking into consideration the possibility that an incoming 

atom may be captured in the lattice site from which the knock-

on atom was displaced. Both models give results which are 

nearly identical. More complex models (1) do not produce 
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significant differences in the end result. 

All present models include an assumption concerning the 

energy Ed required for displacement. Huntington (8) has em­

ployed the best approximation method presently available to 

estimate the displacement energy. The results indicated the 

possibility of several types of displacement energies depend­

ing upon the direction in which the knock-on atom moves. The 

range of energy lies between 18.5 and 43 electron volts for 

copper. Seitz (9) had previously calculated a theoretical 

expression which Huntington utilized in his approximation 

method. Seitz had suggested 25 ev as a good approximation for 

Eq for most materials. Huntington's calculation tends to 

verify Seitz1s assumption, at least so far as copper is con­

cerned. Therefore, it appears that the value suggested by 

Seitz is the best currently available. Most theoretical cal­

culations use this value of displacement energy. The experi­

mental work which has been done on a number of materials is 

reviewed by Dienes and Vineyard (4). The results, however, 

are not in complete agreement. 

In 1954 Brinkman (10) proposed a model for radiation 

damage in metals. He suggests that there are thermal and 

displacement spikes caused by neutron irradiation. Previous­

ly temperature spikes which are comparable to the thermal 

spike of Brinkman were presented. The two mathematical models 

discussed by the author cover the thermal spike of Brinkman. 
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However, the authors of the mathematical models did not pay 

particular attention to the primary knock-on atom after its 

energy became too low to cause further displacements* 

Brinkman follows this primary knock-on atom through the ther­

mal spike until its energy is below the displacement energy, 

and then assumes the remaining energy is transferred to the 

lattice bringing the lattice in the immediate vicinity to the 

molten state with considerable turbulent flow. He estimates 

that 10^ or more atoms in a spherical region known as the dis­

placement spike will be effected at the end of the thermal 

spike. This region will start freezing on the outside, and 

thus should solidify largely in orientation with the original 

crystal although some misoriented regions and entangled dis­

location loops will remain. This is the model which is 

generally accepted today. 

The literature reveals that many experiments are con­

cerned with the production rate of the displacements. The 

procedure is to irradiate the specimen at low temperatures 

and to monitor the change in electrical resistivity. If the 

slope of the curve for change in resistivity versus time is 

constant, it can be assumed that the damage is not annealing 

out. Normally there is some annealing. Therefore, the slope 

at time t = 0 is considered the indication of the production 

rate. Several materials were irradiated at about 20° K (11) 

at Oak Ridge, and, although the slopes were different for 
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different materials, the slope for each material was con­

stant. 

Imparity atoms are formed under neutron bombardment by 

transmutation. This method of adding impurities has been 

utilized to assure a controlled rate of changing the impurity 

concentration. However, this is not considered to be impor­

tant in bismuth since the absorption cross section is low. 

The passage of charged particles or gamma rays through 

a solid may cause extensive ionization and electronic exci­

tation which, in turn, lead to bond rupture, free radicals, 

coloration, luminescence, etc. in many types of solids. These 

effects are most important in the various insulators and di­

electrics, ionic crystals, glasses, etc. Effects of this 

nature are reviewed in the text by Charlesby (12) as well as 

in references (1), (4), and (5). 

Replacement collisions are important in polyatomic 

materials. This is reviewed in (1) and (3)-

The annealing of defects has received considerable 

attention in the literature on radiation damage. Many of 

these articles are reviewed in references (1), (3), and (4). 

The theory and experiment tend to agree in predicting that 

the rate of annealing depends upon the type of imperfection, 

material involved, and temperature. It is generally agreed 

that there is an activation energy for each type of process. 

The theory shows that this activation energy can be 
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evaluated in a number of different ways. Perhaps the most 

frequently employed method is to change the temperature 

suddenly, and then take a ratio of the two rate equations at 

the common point before and after the temperature change 

occurred. If, however, more than one type of imperfection is 

annealing at one time, this activation energy is a mean value 

for all processes. 

The theory for annealing processes was initially devel­

oped using the technique of irradiating at low temperatures, 

and then theorizing as to the forms of impurities which were 

annealing at various temperatures. Current thinking in the 

field (5) tends to consider the annealing process as pro­

ceeding by the formation of groups of a specific defect type. 

Some of these groups are believed to migrate to the grain 

boundaries. Some data tend to support the proposal although 

nothing as yet is conclusive. 

The final problem of concern in this thesis is the deter­

mination of a relationship between a specific type of defect 

and its relative effect on the electrical resistivity. Pre­

sent day theory begins with the relationship presented by Mott 

and Jones in their text of 193^ (13)* They present a rela­

tionship which gives the effect of impurity atoms on electri­

cal resistivity. Several approaches are used by current in­

vestigators , (14) and (15)» who are now interested in inter-

stitials and in vacancies. The references cited here utilize 
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the work of several Ph.D. theses, (16) and (1?)» primarily 

from the University of Illinois. This work has been con­

ducted on monovalent metals. The publication by Blatt (14) 

assumes the free electron approximation and Matthiessen1s 

sum rule are valid. Blatt ignores relaxation of the lattice 

around the imperfections. With these and several other 

assumptions appropriate for the use of Eartree field and the 

partial wave method, he was able to set up suitable analyti­

cal relationships for solution on the ILLIAC computer. Thus, 

he determined the effects of the various impurities on the 

electrical resistivity of copper. Overhauser and Gorman made 

similar calculations for copper, but they used a different 

model. They employed the rigid ion model (2) as described by 

Wilson, and included relaxation of the lattice, but omitted 

the free electron approximation. Their results appear to be 

more in line with experimental data than those presented by 

Blatt. They find that the distortion of the lattice adds a 

significant amount to the resistivity. 
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III. THE THEORY 

A. Discussion of Types of Irradiation (Reactor) Damage 

The literature survey pointed out that certain types of 

irradiation may be more important in some types of material 

than in others. Since bismuth is a heavy element, it seems 

logical to assume that effects on the electrical resistivity 

from electron and gamma bombardment can be ignored when com­

pared to the damage caused by the neutrons when the material 

is irradiated in a reactor. Therefore, only the effects re­

sulting from neutron bombardment will be considered. This 

should give a good order of magnitude for the concentration 

of a specific type of defect. 

For any particular type of damage caused by the neu­

trons, it is possible to write a rate equation which equates 

the rate of change in the number of impurities to the pro­

duction rate minus the decay rate. This can be written in 

symbol form 

II = P - A N 1 

where P equals the production rate, N is the number of im­

purities of a specific type, t is time, and À is a decay 

constant that is dependent upon the particular type of process 

and the temperature. 

The production rate depends upon the magnitude and energy 

spectra of the neutron flux as well as on the type of material 
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being bombarded. When the production of a certain type of 

damage is small compared to the original number of atoms 

available for damage, it is reasonable to assume that the pro­

duction rate is constant and that the original number of tar­

get atoms also remains constant. Equation 1 then integrates 

into an equation showing that an equilibrium point is reached 

at which point the annealing rate equals the production rate. 

At this equilibrium point it is possible to write 

P = X N 2 

Matthiessen1s sum rule, when applied to the change in 

electrical resistivity at equilibrium, indicates that the 

total change in resistivity is equal to the sum of the changes 

caused by the individual types of damage. It can now be 

assumed that this change in resistivity attributed to a spe­

cific type of defect is proportional to the concentration of 

this type of defect, that is 

A % = B N 3 

When the reactor is shut down the production rate is zero and 

equation 1 becomes 

ff = - À N 4 

Substituting equation 3 into equation 4 results in 

d(4,g * = -A<As ) at • 5a 

The literature has shown that the decay constant for inter­

stitial and vacancy annealing is given by the relationship 

shown in equation 6, 
A = K e-E/kT . 6 
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Here K is a rate constant and E is the activation energy. 

The value for A can be determined from the slope of the 
annealing curve. That is, equation 5a when integrated can be 

written as 

In ^7r»^9 = - À t . 5b 
sat 

In this equation AQSat is the magnitude of the electrical 

resistivity which anneals, A^0 is the difference between the 

annealed equilibrium resistivity and the unirradiated resis­

tivity and AS is the total change from the unirradiated resis­

tivity. This indicates that if the production rate can be 

calculated theoretically and A determined experimentally, the 
value for N, the number of interstitials, vacancies, or what­

ever the particular type of damage may be, can be determined. 

Once N is known, the proportionality constant between electri­

cal resistivity due to that particular type defect and the 

concentration of that defect may be found from equation 3. 

The electrical resistivity due to a specific type defect can 

be determined from a graph of equation 5b. This is shown in 

section IV of this thesis. 

B. Interstitial Atom and Vacant Lattice Site Pair Formation 

A combination of the Snyder and Neufeld and Brinkman 

models of radiation damage will be used. The Snyder and 

Neufeld model will be applied to form the displacement pairs 

owing to the thermal spike and then the displacement spike 
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will be used as an additional means of forming interstitial 

and vacancy atoms as well as a form of permanent damage. 

Since the more complex mathematics do not produce a great 

change in this final result and the flux spectra and displace­

ment energy are not known precisely, several simplifying 

assumptions will be made. 

The total probability that a given atom will be displaced 

after a time t can be written 

p = t J 0(E) G(E) dE . 7 

In this equation 0(E) is the neutron flux spectrum and G(E) 

is the probability that a given atom is displaced when a 

neutron of energy E is incident on unit area. This probabil­

ity can be written 

Jm dX 
G(E) = <TS I g(T/Ed) Tm 8 

where it is assumed that the neutron scattering cross section 

is independent of energy and that isotropic scattering occurs. 

The differential scattering cross section included in equa­

tion 8 is 
<5~ s 

d (T = — dT . 9 
m 

In this relationship Tm represents the maximum energy that can 

be transferred from the neutron to the knock-on atom in one 

collision, that is 

Tm = ÛA—_ E _ 10 
(1 + A)2 A 
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since A > > 1, (A = Mg/Mj = 209/1 ) for bismuth. The function 

g(T/Ed) is the number of secondaries produced by a primary 

knock-on atom. The relationship is derived by Snyder and 

Neufeld. It is 

gt(T/%) = 0,561 (1 + T/E^j) T/E& > 2.0 11 

g2(T/Ed) = (1 + In T/Ed) 1< T/% £. 2 . 12 

Substituting into equation 8 and integrating results in 

6l(E) , °-56t A [in + 13 
4 L % Ed J 

G2(E) = A fin Sa + I (In îtt)2l . 14 
4 L ®d ^ Ed. J 

These can now be substituted into equation 7 as 

107 
Pl = °«56l t 0*s A r 0(E) [ In Tm/Ed + Tffl/% - 1 l dE 

4 50 15 

J 0(E) [in Tm/Ed + l/2(In Tg/%)2] dE . 16 

J25 

When these are integrated pj > > p2 and the final result is 

p = 5.21 x 10-7 t 17 

where t is in seconds. This result may not be more accurate 

than an order of magnitude due to the assumptions made in its 

derivation. Therefore, in bismuth where there are about 

Po = A 
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2.825 x 1022 atoms per cm^, the production of interstitial 

atoms and vacant lattice site pairs is 

P = 1.47 z lO1^ pairs per second. 18 

C. Comparison of the Effect of Interstitial Atoms and 

Vacant Lattice Sites on the Electrical Resistivity 

It is possible to predict theoretically what effect 

interstitial atoms and vacant lattice sites will have on the 

electrical resistivity in monovalent metals. The theory as 

given by Mott and Jones (13) and Wilson (2) has been used in 

two recent publications (14)» (15) concerned with copper. 

Many concepts which are in reasonable agreement with exper­

imental data are used in these calculations. Such concepts 

are, for example, used in calculating the magnitude of the 

displacements of surrounding atoms caused by interstitials 

and vacancies as shown by Huntington (8). For his calcula­

tion he extended a theory given by Fuchs (18) and later re­

vised by Seitz (19)* 

The present knowledge of the band structure of bismuth 

does not allow complete calculation. However, with a few 

assumptions it is possible to predict theoretically the 

relative importance of interstitial atoms when compared with 

the same number of vacant lattice sites. 

In treating the interaction of the conduction electrons 

and the lattice distortion it is assumed that the motion of 

the electrons and the nuclei are independent to the first 
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order and that coupling between them is caused by the alter­

ation in the potential energy due to the distortion. 

Let U(i r  -  S)  be the effective potential energy of an 

electron arising from the atom located at the lattice point 

R of the crystal. Assume that the wave function of the 

electrons for the undistorted lattice will be Bloch waves 

N 

When an atom is displaced from its normal position in the 

lattice, assuming that there is no deformation of the atom, 

the perturbing potential energy is 

V(I - R - ug) - U(r" - if) = Ug . V U(r - 3) 20 

where Ug denotes the displacement of the lattice point IT. 

The total potential available for scattering is then 

V = - £ u„  - V U(T - R) . 21 
g 5 

In the zeroth approximation, the total wave function is 

the product of an electronic wave function and a lattice wave 

function. Since it has been assumed that each electron moves 

independently of the others, it is possible to concentrate 

upon one particular electron and discuss its possible transi­

tions. To calculate the matrix element for the scattering of 

an electron from ̂  ̂  k» it is necessary to evaluate the 

integral 



www.manaraa.com

20 

Vkkl - f  Ys e± lg r V^î " • VU<r - IT) dT . 22 
J g g 

Substituting equation 19 into equation 22 results in 

Vj£gi = -n"1 J ug • V U(r* - a) e~lq" ug, u^ dT 23 

where uk is normalized in the unit cell and the substitution 

q = k - k is made* The integral can be approximately 

evaluated* The result is equal to iCq"so that 

V££« = - iCN"1 F q » n„ e"iq*^ 24 
8 6 

where 

C = % I  I v°e 12 dTo -/v  | ° E  | 2  d T  o 25 

This quantity C is the interaction constant between the 

electrons and the lattice, and is of the same order as the 

energy of the state k since the first term is two-thirds of 

the kinetic energy associated with uj£, and the second is the 

mean potential energy* It will be considered constant. 

The Born approximation (20) can be utilized if the 

scattering potential is not large* The differential scatter­

ing cross section can be shown to be 

(j (kL k' ) = m2 I ViSr I 2 = £ A 26 
47T2 Ï4 

where £ = m2 C2/ 47T2N2#4 27 

and A = XI q • u^ e-iq*5" 
g 

28 
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It is now necessary to calculate A for the set of lattice 

displacements ug associated with an interstitial configura­

tion. Huntington (8) has considered the elastic strains 

around an interstitial atom in copper. The configuration used 

had the interstitial located at the body centered position of 

the fee cell. He chose the displacement of the atoms from 

their normal positions as follows: 

Ug = Ç R for nearest neighbors 

* 3 n 29 
u = fi îHrJ for all other neighbors. 
6 II# 

The cell structure of bismuth is similar to that of copper, 

but somewhat distorted. The lattice vectors make an angle of 

57° 16' with each other. Therefore, it seems reasonable to 

choose displacements as indicated in Ug. Overhauser and 

Gorman used the above relations for copper, and found that by 

comparison neighbors other than nearest neighbors had little 

influence. Therefore, this calculation will include only the 

influence of the nearest neighbors. An interstitial located 

in the center of the bismuth lattice will have two nearest 

neighbors at 2.24 angstroms, two neighbors at 2.40 angstroms, 

and two at 2.85 angstroms. It will be assumed that the over­

all effect approximates that of six atoms distributed over the 

surface of a sphere at a distance from the interstitial equal 

to the arithmetic mean value of their areas. This results in 

a distance equal to 2.57 angstroms. 

It is difficult to evaluate the sum in equation 10 
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without approximation. Therefore, replacing the sum by an 

integral over the spherical surface results in 

= > l — f  f q - R Cox 6 ëiqB Cose 
\A TTR^ J J 

R Sine d0 d0 2 _ 

'477%' 

6 £  Cos q R - 1 Sin q R 2 , 30 
q R I 

in which q — 2KQ Sin e/2 where KQ is the wave number associa­

ted with the Fermi surface. The Fermi surface of bismuth is 

complex. However, assuming a spherical surface and using 

Ep — 0.018 ev, the wave number is K0 = 0.155 angstroms"1. The 

relationship for the appropriate average cross section as 

given in Mott and Jones is 

6 = J 6" (e) (1 - Cos e) dfi . 31 

Substituting equation 26 into equation 31 results in 

6  = 496 7T £ 2  £  . 3 2  

Mott and Jones give the following relationship for the 

resistivity caused by a one percent concentration of inter­

stitial atoms î 

%o = * - 33 
100 e2 

The <5* listed in equation 31 contains an electron-lattice 

interaction constant C and an effective electron mass m. 

These are difficult to evaluate. The effective mass in 

bismuth is not known with any precision. Therefore, the 
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technique used, by Overhanser will eliminate this constant 

and mass and allow a direct comparison. The procedure is 

to write 

" f * exp 34 

where Q ̂  is the theoretical resistivity at low temperatures. 

This is in reasonable agreement with experiment, and is given 

by Wilson as 

o _ 377m2 C2 T 
< 35 
1 4jU e2 * k e2 

where 

6 = Debye temperature, k — Boltzmann* s constant, 

fJL ~ mass density, and T = absolute temperature. 

The Q eXp in equation 34 is the resistivity without imparities 

measured at the temperature T. The factor f is the constant 

that takes into consideration the Umklapp contribution at 

higher temperatures. From equation 34» then, it is seen that 

f Q 1 = ^ , 36 

and when this is multiplied by equation 33 there results 

q = f ¥ Kq 6 Q exp 

100 e2 ^ j » 37a 

or 

.2 
S* = 496 e 2 r Ko At k e' 

x exp. 37b 
#2 IT 2 300 N2T 
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The value of the bracketed terms is 1.122. Therefore, the 

residual resistance due to one percent interstitial atoms is 

% = 55& f 2 f % . 38 
0 exp 

An approach identical to that used above can be used for 

the vacant lattice site strain contribution to the resistivi­

ty. Bismuth has three nearest neighbors at 3.11 angstroms and 

the next three neighbors at 3.48 angstroms. Using arithmetic 

averages again, the mean distance is 3*29 angstroms. Using a 

ô in place of 6* in the same type atomic displacement, only a 

negative displacement for vacancies, equation 37b appears as 

= 104 ô2 f Ç . 39 
0 exp 

It is necessary to add to the resistivity already given 

by 38 and 39 the contributions rising from the impurity it­

self, and the contribution from the interference between de­

fect and strain scattering. This calculation was made by 

Jongenburger and Blatt employing a partial wave method and a 

solution on the ILLIAC computer. Their results indicated that 

the vacancy itself contributed approximately twice the value 

obtained from the vacancy strain scattering. The strain 

scattering for the interstitial accounts for 95 percent of the 

total resistivity attributed to this type of impurity. 

If it is now assumed that the ratio of f/6 is identical 

to that found by Huntington for copper and that equation 39 



www.manaraa.com

25 

is only one-third, the total value, the ratio becomes 

= 4.5 40 
vac 

where €/ô is taken to equal 1.6, the value for copper. 

D. Production of Displacement Spikes 

Displacement spikes are assumed to be produced by all 

neutrons having energies above 3^. If the equation for the 

flux is integrated the result indicates that there are approx­

imately 2.28 x 101* neutrons per cm^ above this energy. This 

would then be the density of the displacement spikes. 

Brinkman believes that at least 10^ atoms are involved in 

each displacement spike, and so this means approximately 

2.28 x 10*5 atoms/cm^-sec are effected. 

The model Brinkman proposed is difficult to present in 

mathematical form. It can be visualized that in a solid the 

displacement spike occurs as a molten sphere in which for a 

short time there is a high turbulent flow. This turbulent 

flow produces interstitial atoms along the surface of the 

sphere. When this sphere begins to solidify, it will do so 

initially along the outer periphery and proceed toward the 

center. Most solids will contract when cooled, thereby 

causing strains and dislocation loops. The center of the 

sphere will probably have a lower atomic density. The pro­

cess leaves some of the atoms interstitially placed. 

Bismuth may act somewhat differently. When the 
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dislocation spike is formed, the density increases with a 

volume decrease of about 3.3 percent. This means that there 

will be a lower than normal density surrounding the sphere. 

The turbulent flow involved in the sphere may be able to cause 

some of the atoms to assume deeper interstitial positions than 

would normally be true for other solids. Since the total 

number of atoms involved is of the same order of magnitude as 

the pair production, the displacement spike may provide a sig­

nificant additional source of interstitial atoms. The pri­

mary effect, however, will be to introduce dislocation loops 

as it is reasonable to assume that the molten matter in the 

sphere will solidify in orientation with the crystal. 

The dislocation loops will provide additional scattering 

centers for the conduction electrons and lattice waves. The 

theoretical calculation which would yield an estimate of the 

effect of a specific density of dislocations on the electrical 

resistivity must include the coupling between the conduction 

electrons and the lattice. This has not been adequately 

solved for comparatively simple metals such as copper. There­

fore, the effect of dislocations in bismuth, where the elec­

tron lattice interaction is relatively large, will probably 

be significant. 

E. Discussion of the Irradiation Effect by 

an Analysis of the Annealing Curve 

The literature survey briefly mentioned the procedure 
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currently in use by many experimenters who are attempting to 

interpret the data which they collect. Annealing data can be 

analyzed in the same manner as the decay of a radioactive 

specimen containing several half lives. This technique is 

not suitable when more than three or four processes are pre­

sent, or when processes in which the half lives are very near 

the same value are involved. However, for many radiation 

damage studies it appears to be very useful. 

For example, the data as published by Overhauser (15) 

may be considered. In his paper and later in an analysis by 

Seitz (1), Overhauser states that there are probably two pri­

mary processes taking place and that the rate equation is of 

the form 

a(/dt } = Ko <A * >S 41 

where & — 2.5. The magnitude of 6 indicates the complexity 

of the annealing process. Figure 1 shows a graph presented in 

Overhauser's publication. If the annealing is assumed to have 

reached equilibrium at = 0.24 x 10*"^ ohm-cm, then it is 

possible to plot the Figure 2 where A^sat is the value of the 

total electrical resistivity which annealed. This plot 

appears to separate the two annealing processes clearly. 

If this type of plot has separated two processes, it is 

possible to determine an activation energy and rate constant 

for each process. The slope of the curve in Figure 2 for each 

process can be equated to 
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Figure 1 » Isothermal annealing curve for irradiated 
copper (-18.3° C) as published by Overhauser 
(15)  
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Figure 2. Annealing data from Figure 1 replotted in a 
manner which reveals the half lives for two 
decay processes 
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X ~  K i  e"E/kT 42 

where À is determined experimentally for two different 

temperatures T. Simultaneous solution of the two relation­

ships results in values for and E* 

Figure 2 is a graphical solution for the rate equations. 

The values of the resistivity at time zero can be interpreted 

to give the relative amount attributable to each process of 

the total resistivity which annealed. The ratio of this 

quantity can be compared with the theoretical estimate pre­

sented in equation 40. 
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IV. THE EXPERIMENT 

A. Source of the Bismuth Crystals 

The bismuth crystals were grown by Monocrystals Company, 

1721 Sherwood Boulevard, Cleveland 17» Ohio, from material 

originally purchased from the American Smelting and Refining 

Company, South Plainfield, New Jersey. The latter states that 

for lot 60-2A the spectrographic analysis shows 99 »999+ per­

cent by difference pure bismuth. 

B. Preparation of the Specimens 

The polycrystalline specimen was prepared by Monocrystals 

Company so that the crystals were of approximately uniform 

size. The average grain size, determined by Monocrystals 

Company by direct comparison to the ASTM Grain Size Standards 

for the Estimation of the Diameters of Average Grain of 

Nonferrous Metals, was estimated at 1.1 mm in diameter, 

allowing for a slight elongation of the grain. 

One purchased single crystal was one inch in diameter 

by one and one-half inches in length. The second single 

crystal, which contained some small surface crystals, was 

supplied in the dimension of one inch diameter by two and 

one-half inches in length to assure ample single crystal size. 

These two crystals were mounted in a Laue camera, and photo­

graphed in different orientations to locate the c axis. 

The specimens were first cut with a Carborundum wheel 
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Figure 3. Contact locations in the Hall and magneto 
resistance measurements 
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Figure 4* Magneto resistance of irradiated bismuth 
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Figure 5» Hall coefficient data 
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Figure 6. Calculated Hall coefficients using Eg = Vt/IH 
(evaluate at the intercept with the zero field 
axis ) 
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and then toy a jeweler's saw which brought the dimensions to 

the approximate sizes of one-fourth by one by two and one-

half inches and one-fourth by one by one and one-half inches. 

The specimens were then hand polished to the final size of 

0.3 by 1.2 by 3.15 cm for the polycrystalline, 0.284 by 1.235 

by 5*7 cm for the long dimension parallel to the c axis, and 

0.3 by 1.23 by 3.15 cm for the long dimension perpendicular 

to the c axis. The crystals were then etched and again 

photographed with the Laue camera to check orientation and to 

ensure that the specimens were still single crystals. 

C. Measurement of Hall Coefficient and Magneto Resistance 

A specimen holder made from plexiglass allowed pressure 

contacts between pointed copper wire and the specimen which 

was positioned as illustrated in Figure 3. The Hall voltage 

was measured between probes A and B with the magneto resist­

ance measured between probes B and C. To eliminate error in 

measurement due to possible nonalignment of probes A and B and 

contact potentials, the following procedure was used. Four 

readings were made for each magnetic field setting. The com­

bination consisted of the current being reversed with the mag­

netic field constant. Then the magnetic field was reversed 

and readings repeated with the current flow in each direction. 

The results of these measurements are shown in Figures 4, 5» 

and 6. 
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D. Mounting of Specimens 

Each specimen has lead-bismuth low temperature soldered 

attachments for current to be led to and from the specimen. 

Each specimen was drilled through the d dimension (Figure 3) 

with a number J6 drill to assure a tight fit for the copper 

probes. The specimen container included aluminum shields to 

help minimize convection heat transfer and a heater. The 

copper-constantan thermocouples were hand wound leaving a 

copper length of approximately 2 cm in length beyond the 

winding. This length was then inserted through the drilled 

hole. This was a tight fit, but, to assure that the wire 

would not pull out, it was bent to the side and then cut off 

near the surface of the specimen. It is noted here that the 

specimens were heated approximately 15° C during irradiation, 

and, since bismuth contracts during heating, the holes became 

smaller affording a good contact. This type of instrumenta­

tion allowed measurement of temperature and temperature gra­

dient as well as resistivity measurements. 

E. The Electrical Circuit 

Figure 7 shows a schematic drawing of the two systems 

used. The current source was two standard six volt auto 

batteries connected in parallel. The switch board connected 

to the potentiometer allowed rapid switching to facilitate 

measurement of potential drop across the standard resistor 

and the specimen. 
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Figure ?• Wiring diagram showing the instruments as used 
in the irradiation experiment 
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F. Measurement of Electrical Resistance 

The procedure employed in measuring the potential drop 

across the specimen was set up to minimize errors in the final 

result. The reversal of the current was to prevent build up 

of a temperature gradient. The magnitude of the current was 

varied in each direction and then the resistance determined 

was plotted against current. Extrapolation to zero current 

gave a factor that would include effects of contacts, end 

corrections, etc. This procedure was necessary due to the 

large thermoelectric effects between copper and bismuth. 

The thermocouples were calibrated for reading tempera­

tures between 18° C and 60° C. Electrical resistivity curves 

as shown in Figure 11 were run for each specimen in the tem­

perature range between 18° C and 60° C. These resistivity 

measurements were repeated in the reactor in the temperature 

range of 18° C to 35° C, the maximum attainable temperature 

from the heater in the reactor environment. 

G. Reduction of Data 

Figure 8 shows a graph of the irradiation data for all 

crystals. It should be noted that the time axis on the graph 

has three different scales. The appendix contains these data 

and an illustration of the step by step procedure for arriving 

at the final resistivity. 

The electrical resistivity and current are listed in the 

first columns along with the time. The time runs from zero, 
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Figure 8. A graphical representation of the data 
obtained from the bismuth crystals 
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the point at which the reactor reached the power level of 

10 kw, until the reactor was shut down. The annealing time 

begins at this point. The temperature was monitored and is 

listed in the column after the measured resistivity. The 

next column lists the temperature correction applied to the 

resistivity. Since the annealing curve is of primary concern 

along with the equilibrium change in resistivity, this 

correction brings the resistivity for all measurements up to 

the temperature at which annealing began. The next column is 

the corrected resistivity, and it is the change in this value 

that is tabulated in the last column. This is the value 

plotted in Figure 8. 

H. Measurement of the Flux Spectra 

The flux spectra can be obtained approximately by util­

izing indium foils covered with materials of known neutron 

absorption cross sections. The cross sections as presented 

by Hughes (21) were replotted on rectangular graph paper, and 

the area under each curve measured by means of a planimeter. 

Average cross sections for a specific energy range were then 

tabulated. Scattering cross sections were taken as a mean 

value and then subtracted leaving an approximate absorption 

cross section. Certain elements such as aluminum, manganese, 

and molybdenum have resonance absorption peaks in different 

energy ranges. When different combinations are used with 

cadmium as cover over indium, it could be assumed as a first 
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estimate that neutrons with their energies within the reso­

nance ranges would, be absorbed, and the activity of the 

indium would come from energy ranges not covered by the high 

absorption areas. It was found, however, that the slowing 

power of light elements such as aluminum is too great, and 

foils covered with aluminum and manganese combined with 

cadmium actually had a higher activity than the indium foils 

covered with cadmium alone. The molybdenum appeared to work 

well. Therefore, the following technique was used. 

The combination of cadmium, indium, and molybdenum 

provided four equations containing activities caused by 

absorption of neutrons in the indium from nine energy ranges. 

These ranges were divided so that each contained a power of 

ten electron volts. For example, the first energy range was 

between .01 ev and 0.1 ev. The highest energy range was from 

1 Mev to 10 Mev, and it is assumed that the number of neutrons 

above this are negligible. The activities corrected to the 

core center give the following relationships : 

Indium foil bare: 

a + b+ c+ d+ e+ f+ g+ h + i = 10.4 x 10*1 disintegrate/ 
sec 

Cadmium covered indium: 

c  +  f + g + h + i =  1 . 9 1 2  x  1 0 1 1  d i s i n t e g r a t e /  
sec 

Subtracting above: 

a  +  b  +  d + e  =  8.488 x 10** disintegrate/sec 
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Cadmium and molybdenum covered indium 

c + f = 1.9 x 10** disintegrate/sec. 

An approximate solution was found by using five by ten 

cycle log-log paper and plotting a bar graph, balancing the 

areas under each bar in the specific energy range so that the 

total area satisfied the four equations. Since the general 

shape of the curve is known, it is believed that the curve is 

a reasonable first estimate. More elaborate experiments are 

necessary to provide nine independent equations to give a 

better curve. Once the activity attributed to a specific 

energy region is known, the neutron flux can be calculated 

from the known activation cross sections and the number of 

atoms in the foil. The resulting flux spectra is approximated 

by the following relationships: 

Q = 2.8 x 10** 0.01 1 E £ 1.0 ev 

1.0 < E * 107 ev 
43 
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V. INTERPRETATION OF DATA 

A» Analysis of the Annealing Carve for the Crystal with 

Conduction along the C Axis 

The data given in the appendix are presented in graph­

ical form in Figure 8. Figures 9 and 10 present decay curves 

graphed on semilog paper for annealing at two different 

temperatures. It is seen that two distinct half lives are 

present in each instance. It is assumed that the short half 

life in each case represents the same type of annealing 

process. When this assumption is made and the ratio of the 

decay constants is found for each process, the rate constant 

and activation energy can be calculated. The procedure is 

as follows* 

A = K e-E/kT 

Process 1 Process 2 

0.1025 = K1 e"El/o.0265 .047 = K2 e"E2/*0265 

1.68 = K, e-E,/0.02Sl 1.0 = Kg e"E2A°2Sl 

0.061 = e~2-1 E1 .047 = e"2"1 Ea 

Ej = 1.0 ev Eg = 1.46 ev 

Kt = 1.98 x 10*5 K2 = 2.44 x 1022 

The values obtained for Ej and Eg are somewhat lower 

than expected. Many semiconductors are believed to have 

about 2 ev as a mean value for the activation energy. 
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Figure 9* Annealing curve for the bismuth crystal with 
conduction parallel to the c axis (annealing 
temperature 380 C) 



www.manaraa.com

54 

\A.Ô HR 
O. Û4675 HR 

o. A 

Tirv\e aftsu. Reactor. S\avt Oo w m — Ho o r î  



www.manaraa.com

Figure 10. Annealing curve for the bismuth crystal with 
conduction parallel to the c axis ( annealing 
temperature 56.5° C) 
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The value of the rate constant for Kg is high. The 

literature states that the mean value for the rate constant 
O | O 

lies between 10 and 10 , the high end applicable primarily 

to semiconductors. 

The literature revealed that the activation energy for 

interstitials for all materials discussed is less than that 

required for vacancies. This indicates that the short half 

life activity is probably due to the annealing of the inter­

stitial atoms. A supporting argument concerns the contribu­

tion to the total change in resistivity during equilibrium. 

Of the total resistivity change, 11 fJi ohm-cm, only 3.6 JJL 

ohm-cm annealed in the time indicated on the graph in Figure 

8. Using this as the total change due to annealing, Figure 9 

can be interpreted to read that 28 percent of this total 

change or 1.01 fJL ohm-cm of resistance is attributed to the 

process with the short half life. The other process accounts 

for 2.59 jU ohm-cm resistivity change. 

The comparison of the relative effects of interstitial 

atoms and vacant lattice sites on the resistivity given in 

equation 40 can now be used to help estimate the number of 

interstitial atoms and vacant lattice sites. This relation­

ship estimated that an interstitial atom had 4*5 times the 

effect on electrical resistivity as did a vacant lattice site. 

Let the subscript 1 refer to the vacant lattice site and the 

subscript 2 refer to the interstitial atom. The relationships 
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for the eqailibritnn condition tinder irradiation can be written 

pi = Ai Ni 

p2 = A 2 N2 . 44 

The data reduce to the value 

A* i 
™Â?i = 2'57 • 45 

Using the theoretical value of 4-5 as the relative effect of 

the two types of impurities and equation 45 produces the 

equilibrium relationship 

Nj = 11.6 N2 . 46 

Substituting equation 46 and the experimental values for À ̂ 

and Àg into equation 44 reveals that for the equilibrium 

production rate 

= 0.71 P2 . 47 

This relationship reveals that the production rate of vacan­

cies is only 71 percent as great as that for interstitial 

atom formation. This difference from a one to one production 

rate may be attributed to the contribution from the displace­

ment spike. 

Equation l8 indicated that approximately 1.47 x 10*4 

pairs of interstitial atom and vacancy lattice sites are 

produced per second via the thermal spike. When this is 

substituted into the equilibrium relationship, there results 

a value for the number of vacant ""attice sites per cm3. This 
1 S 

number is 5*16 x 10 . The number of interstitials is found 
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from equation 46 and is 4»45 x 1017 atoms per cm^. 

There was a 7*4 ohm-cm resistivity which did not 

anneal. This resistance cannot be attributed to any one type 

of impurity* At any temperature there is a saturation concen­

tration of vacancies and interstitials that can be supported 

in a crystal without annealing taking place. In bismuth this 

allowed concentration decreases as the temperature increased. 

Therefore, the crystals can be assumed to have absorbed the 

damage caused by the neutrons until the saturation point. 

Then the number produced above this point came into equilib­

rium with the annealing rate. 

In equation 3 it was stated that during the equilibrium 

phase of the irradiation it was possible to write = B N. 

The values given above result in 

b, = 4.42 x 10-19 (. M 9 tun-cm4 \ 
1 \ # vacancies J 

Bp = 2.27 x 10™18 ( M ohm-cm —| 
2 \ # vacancies/cm3 J 

b. Analysis of the Data Received from the Specimen 

with Conduction Perpendicular to the C Axis 

The graph of the data reveals that this crystal initially 

had a decrease in electrical resistivity followed by a sharp 

increase, reaching a saturation point in less time than that 

required for the Q|| specimen. After reactor shut down, this 

crystal did not anneal to the extent as did the ^ crystal. 
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In this crystal only a very small amount of annealing oc­

curred. This makes it difficult to analyze the decay curve in 

the same manner as used for the S;| crystal. 

However, it can be seen that the short half life decay 

process did not contribute to the part that did anneal in any 

significant manner. This means that the interstitial atom 

density above the equilibrium level was very low. On the 

other hand, the vacant lattice sites were also less dense. 

There are several reasons that this type of annealing 

curve was found. First, there is the possibility that the 

flux may have been lower at this location since the thermo­

couple leads from the other two crystals passed by this 

crystal. However, the masses involved make this seem un­

likely. The second and most plausible reason concerns the 

effect of the electron current on the impurities caused by 

irradiation. This crystal presents planes of atoms perpen­

dicular to the electron current flow. The structure will have 

two planes close together, then a larger dimension before the 

next two planes. An interstitial atom must sit between these 

planes, and has the highest probability of being found between 

planes that are the farthest apart. The activation energy 

will be the greatest for interstitial atoms located between 

the planes lying closest together. It is conceivable, there­

fore, that the forces involved in the interaction between the 

electrons and lattice strains may have caused the interstitial 
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atoms with the lower activation energy to anneal more rapidly. 

The few that remained, along with the vacant lattice sites, 

could have been adequate to give the equilibrium level for the 

change in resistivity during irradiation. 

The literature points out that in some semiconductors 

the resistivity change follows a curve similar to that pre­

sented here, that is, a sudden drop and then a sudden recov­

ery. Some semiconductors do just the reverse. The explana­

tion normally given refers to the Fermi surface and the width 

of the forbidden zone in the band theory. As has been pre­

viously mentioned, bismuth has a very small energy gap. 

Therefore, the sudden introduction of a high neutron flux en­

vironment may tend to lower the Fermi energy and to therefore 

put more carriers into the system. Reference 22 gives data 

showing this to be true in semiconductors. It does not take 

long for the saturation point to be reached at which point the 

increase in carriers is offset by the radiation damage short­

ening the carrier relaxation length. 

It is also possible that initially the irradiation en­

vironment was annealing the work hardening and other residual 

stresses set up in the specimen. Figure 3 illustrates slip 

lines that were visible on the crystal surface which indicate 

some atomic movement had taken place. However, all crystals 

were handled in the same fashion and such a curve did not 

occur in either the polycrystalline or the ^ jj specimen. 



www.manaraa.com

62 

It is also noteworthy that at this minimum in resistivity 

the overall value was still much higher than for ^ h • This 

shows that the extra carriers introduced were not sufficient 

in number to be noticeable in the specimen. The magneto 

resistance and Hall coefficients shown in Figures 4» 5 »  and 6 

show that the effective carrier relaxation time for is 

much greater than for the Ç(| specimen. 

C. Analysis of Data from the Polycrystalline Specimen 

The data from the polycrystalline specimen shown plotted 

in Figure 8 is difficult to analyze. At first glance one 

might suspect that the curve should look something like 

a compromise between the curves for the single crystal data, 

particularly when one considers that the average in bismuth is 

^ — 1/3 ̂  || + 2/3 Çj. * Note that this fits the preirradia-

tion data very well. However, the literature has shown that 

the overall picture is not as simple as this. To explain data 

on polycrystalline samples, new theories are currently being 

tested. These theories are concerned with the mechanism of 

annealing. Many people are now of the opinion, for example 

see reference 23, that the impurities initially form pairs, 

then larger clusters, and finally some anneal on the crystal 

surface. The data from this specimen appear to indicate that 

this is the case for bismuth. The twenty six minute delay 

when the reactor inadvertently scrammed helps strengthen this 

point. It appears that of the damage accumulated about thirty 
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percent of it annealed during this time. This is not the case 

for either of the single crystals. 

These data point to a method which may help establish the 

theory concerned with defects clustering and annealing on a 

crystal surface. If annealing occurs in this manner, it 

should be possible to plot a curve of the rate constant for a 

specific type defect against crystal surface area density. 

The crystal surface area density would depend on the size of 

the crystals. The single crystal could be assumed to present 

a zero value for this density. Several polycrystalline speci­

mens of known uniform crystal size, with sizes varying from 

one crystal to another, subjected to a similar environment as 

the single crystal should give sufficient data to plot the 

curve. The slope of this curve would be an indication of the 

rate constant dependence upon the surface area. If the slope 

is zero, it could be concluded that the surface area has no 

effect. However, the polycrystalline specimen tested here 

indicates that the slope would not be zero. 
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VI. DISCUSSION 

The analysis as described, in this thesis shows a method 

that makes it possible to obtain some agreement between the 

theory of irradiation damage and experimental data. The 

normal, or generally accepted, manner of reporting irradiation 

dose rate mast be supplemented with additional information 

before comparison can be made. The nvt magnitude along with 

temperature is entirely inadequate without a statement of the 

flux spectra. It also appears that the polycrystalline mater­

ial data must include reasonably accurate estimates of the 

crystal size. Included in the above must, of course, be the 

most accurate data available concerning impurity concentra­

tions. 

The procedure established for this thesis reveals that it 

is possible to separate the effects of the various impurities 

on the electrical resistivity. With this information avail­

able, it is then possible to make an additional check on 

theoretical calculations, and to determine more accurately 

where the theoretical errors lie. When this theoretical value 

for the effect on resistivity of various impurities is known, 

it is possible to determine accurately the proportionality 

constant between impurity concentration and electrical resis­

tivity. The final link in the theory will be a check on the 

impurity production rate. 

This thesis shows an approach which may help in corre-
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lating experimental data. To facilitate this correlation, 

it is desirable to replace the integrated flux with an 

effective flux corrected to eliminate the anneal ing rate. 

The accuracy of the data presented here depends primarily 

upon the errors inherent in measuring physical properties of 

matter and upon corrections for temperature variation. Re­

versal of the current eliminated consideration of the build 

up of surface potentials. The accuracy of the recording 

equipment would allow the introduction of errors ranging from 

one to five percent in the reading. However, pre-irradiation 

tests, using the same method as was employed throughout the 

experiment, agreed well with published results of other ex­

perimenters. The correction factor which corrected the 

resistance to zero current was considered constant throughout 

the irradiation experiment. A number of checks were made to 

verify this assumption. These tests confirmed that the fac­

tor remained constant. 

The effect of the temperature variation can only be 

estimated. All corrections were made from curves appearing 

in the appendix. These curves represent the resistivity for 

the bismuth before irradiation. How correct these curves are 

for bismuth during irradiation is not known. When one 

analyzes the problem and takes into consideration that the 

temperature only changes a few degrees the error introduced 
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here should, not be great. This means that the data should, 

be consistent within itself with errors perhaps in the order 

of one percent. 
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VII. CONCLUSIONS 

"The major problems in the theory of radiation 
effects may be classified in three categories: 
(1) the mechanism of damage production, (2) the 
nature and mobility of the imperfections produced, 
and (3) the effect of imperfections on measurable 
properties of the solid. It is difficult to make 
a clear separation of these areas since, for 
example, the answer to (2) depends greatly on (1) 
and (3) provides the only experimental means of 
studying (1) and (2).11 - Brooks (5 ) • 

1. The half life approach has provided a means of determin­

ing the relative effects of the individual types of irradia­

tion damage on the resistivity. This approach is a solution 

of ( 3 )  and, therefore, allows reactor study of (1) and ( 2 ) .  

2. The half life approach provides a basis for an experi­

mental procedure to determine the proportionality constant 

between electrical resistivity and the concentrations of a 

particular type of defect. 

3 .  This half life approach provides a more direct method 

than the temperature variation method of determining activa­

tion energy for a specific type impurity. 

4- The annealing activation energy in bismuth for inter-

stitials is 1 ev and for vacant lattice sites is 1.46 ev, 

limited, of course, by the accuracy of the data. 

5. The half life approach introduced here provides a means 

of correlating experimental data with theoretical calculations 

of the effects of the individual radiation produced impurities 

on the electrical resistivity. 
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VIII. SUMMARY 

The quantity of irradiation damage in solids can be 

estimated from electrical resistivity measurements during 

and after irradiation. For low neutron flux irradiation 

experiments at room temperature, the damage rate in bismuth 

will reach an equilibrium balance with the annealing rate. 

This fact points out the fallacy of giving radiation dosages 

in nvt along with the irradiation temperature. The annealing 

curve for the change in resistivity after reactor shut down 

can be analyzed to determine the types of impurities which 

are annealing and their activation energy. In bismuth it was 

found that the interstitial atoms annealed with an activation 

energy equal to 1 ev while the vacant lattice sites annealed 

with an activation energy equal to 1.46 ev. 

The theoretically derived relationship between the effect 

of one percent interstitial atoms and one percent vacant lattice 

sites indicated that the interstitial atom has 4»5 times as 

great an effect on the electrical resistivity as does a vacant 

lattice site. This value and the relative amounts of change 

in electrical resistivity during the equilibrium balance between 

production and annealing allowed an estimate which revealed the 

relative concentrations of interstitial atoms and vacant lattice 

sites. It was found that there were 11.61 times as many vacant 

lattice sites as interstitial atoms, and that the relative 

production rate of vacancies was only 71 percent as great as 

that for interstitial atoms. With a production rate calculated 
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from some approximate information such as the flux spectra, 

18 
this indicates a concentration of 5 x 10 vacancies and 

4 x IO17 interstitial atoms per cm3 during equilibrium. 

This means there were approximately 0.02 percent vacancies 

and 0.002 percent interstitial atoms. 

The data from the irradiated specimens show that the 

polycrystalline sample annealed the damage at a much higher 

rate than either of the single crystals. This indicates that 

the migration of the impurities may have been to the grain 

boundaries. 
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XI. APPENDIX 

Table 1. Electrical resistivity data from the polycrystalline 
specimen (correction factor to zero current is 
0.902) 

Time 
(hours) 

Volt drop 
across 

std. res. 

Current 
f low 

(amps. ) 

Volt drop 
across 
specimen 
( jU-vo 11 ) 

Resistance 
R = E/I 

( /-/-vo 11 ) 

0 .07764 2.725 1520 557 
1.25 .07506 2.640 1512 573 
3.0 .07030 2.750 1605 584 
3.9 .07714 2.714 1595 588 
4.2 .07845 2.760 1622 588 
5-4 .07686 2.704 1610 594 
6.8 .07784 2.739 1630 597 

Table 1. (Continued) 

Time Resistivity Tempera- Resistivity Corrected 
(hours) (//-ohm-cm) ture (°C) correction resistivity a o 

to 38°C {/J-ohm-cm) 

^ e 

0 120.8 22.0 
1.25 124.0 25.0 
3.0 126.1 28.0 
3.9 127.1 30.2 
4.2 127.0 31.0 
5.4 128.7 35.0 
6.8 129.3 36.0 

6.7 127.5 0 
5.5 129.5 2.0 
4.4 130.5 3.0 
3.4 130.5 3.0 
2.8 129.8 2.3 
1.4 130.1 2.6 
1.0 130.3 2.8 
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Table 2. Electrical resistivity data from the specimen with 
conduction perpendicular to the c axis (correction 
factor to zero current is 0.948) 

Time 
(hours ) 

Volt drop 
across 
std. res. 

Current 
flow 

(amps. ) 

Volt drop 
across 
specimen 
( /u-vo 11 ) 

Resistance 
R = E/I 

i/u -volt ) 

0 
0.5 
1 .8  
3.8 
4.7 
6 . S  
7.8 
9.9 
S.o 
12.0 
32.8 
4.4 days 
5.0 days 
7.8 days 

.08257 

.08081 

.08344 

.08359 

.08371 

.08352 

.08363 

.08345 

.08244 

.08280 

.08339 

.08374 

.08371 

.08359 

2.9050 
2.8434 
2.9359 
2.9414 
2.9456 
2.9308 
2.9508 
2.9363 
2.9010 
2.9130 
2.9347 
2.9462 
2.9454 
2.9414 

1631 
1580 

IIP 
1782 
i860 
1880 
1872 
1810 
1802 
1810 
1820 
1818 
I8l8 

562 
556 
544 
576 
605 
634 
637 
639 
624 
619 
610 
618 
618 
618 

Table 2. (Continued) 

Time 
(hours) 

Resistivity 
(/x -ohm-cm) 

e 

Tempera­
ture (°C) 

Resistivity Corrected 
correction resistivity 
to 38 C (/J. -ohm-cm) 

AC 

0 

?:L 
3.8 
4.7 
6.8 
7.8 
9.9 
S.o 

12.0 
32.8 
4 .4  

?:I 

135.2 22.0 3.8 139.0 
133.7 
130.8 

23.O 3.5 137.2 133.7 
130.8 26.5 2.8 133.6 
138.8 30.0 2.5 141.3 
145.8 32.0 2.0 147.0 
152.4 36.O 1.0 153.4 
I53.O 37.0 0.6 153.6 
153.6 38.O 0.0 153-6 
150.2 24.8 3.0 153.2 
I49.O 22.2 3.8 152.8 
148.7 22.0 152.5 

d 148.7 22.0 3.8 152.5 
d 148.7 22.2 3.8 152.4 
d 148.7 22.2 3-8 152.5 

0 
- 1 .8 
-5.4 

2.3 
8.8 
14.4 
14.6 
14.6 
14.2 
13.8 
13.5 
13.5 
13.4 
13.5 
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Table 3. Electrical resistivity 
conduction parallel to 
factor to zero current 

data from the specimen with 
the c axis (correction 
is 0.97) 

Time Volt drop Current Volt drop Resistance 
(hours) across flow across R = E/I 

std. res. (amps. ) specimen (//-volt ) 
( //-volt) 

0 .08081 2.8434 3288 1138 
1.5 .08045 2.8306 3305 1169 
3.4 .08129 2.8604 3560 1242 
4.3 .08175 2.87632 3622 1262 
5-8 .08164 2.8727 3790 1320 
7.1 .08204 2.9021 3835 1235 
8.8 .08210 2.8890 3880 1341 

10.1 .08210 2.8889 3870 1339 
l.o .08210 2.8890 3860 133S 
4.3 .08165 2.8727 3810 1322 
8.8 .08175 2.8763 3640 1268 

17.0 .08205 2.8876 3550 1230 
32.0 .08210 2.8864 3539 1225 

3 days .08210 2.8884 352b 1222 
4.5 days .08210 2.8884 3525 1221 
7.7 days .08206 2.8879 3525 1221 
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Table 3. (Continued.) 

Time Resistivity Tempera-
( hours) (yC/ -ohm-cm ) ture ( C) 

Resistivity Corrected 
correction resistivity 
to 38°C (^/-ohm-cm) 

e 

A€ 

o 
1.5 
3-4 
4-3 
5.8 

10.1 
1.0 

17.0 
32.0 
3 days 
4.5 days 
7-7 days 

110.7 
113.4 
120.8 
122.5 
128.0 
128.8 
130.2 
130.1 
129.9 
128.4 
122.9 
119 .3  
llg.7 
118.3 
118.2 
118.2 

22.0 
26.0 
29.5 
31.0 
36.O 
36.O 
37-5 
38.O 
37.9 
36.5 
24.0 
22.0 
22.0 
22.0 
22.0 
22.0 

8.5 
7.5 
5.0 
4.0 
1 . 0  
1.0 
0 
o 
0 

0.5 
5.5 I 

119.2 
120.9 
125.0 
126.5 
129.0 
129.8 
130.2 
130.1 
129 .9  
128.9 
128.4 
127.8 
127.2 
126.8 
126.7 
126.7 

o 
1.7 
6.6  
7.3 
9.8 

10.6 
11.0 
10.9 
10.7 
9.7 
9.2 
8.6 
8.0 
7.6 
7-5 
7.5 
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Table 4* Electrical resistivity 
condnction parallel to 
factor to zero current 

data from the specimen with 
the c axis (correction 
is 0.97) 

Time Volt drop Current Volt drop Resistance 
(hours) across flow across R = E/I 

std. res. (amps. ) specimen (//-volt) 
(//-volt) 

0 .0711 2.500 2985 
0.20 .0709 2.490 2990 
0.45 .0707 2.485 3002 
0.50 .0707 2.485 3020 
0.75 .0707 2.485 3018 
1.00 .0704 2.474 3010 
1.20 .0706 2.482 3050 
1.55 .0706 2.482 3160 
1.70 .0706 2.482 3180 
2. 10 .0806 2.482 3230 
2.25 .0705 2.478 3250 
2.50 .0703 2.471 3310 
2.70 .0705 2.478 3350 
3.00 .0706 2.482 3370 
0.15 .0705 2.478 3360 
0.25 .0705 2.478 3350 
0.50 .0706 2.482 3355 
0.75 .0706 2.482 3342 
1.00 .0708 2.488 3350 
1.50 .0710 2.492 3350 
2.00 .0715 2.515 3350 
2.50 .0700 2.460 3260 
4.00 .0704 2.475 3190 
6.00 .0704 2.475 3150 

1196 
1201 
1208 
1212 
1210 
I215 
1238 
1272 
I28O 
1304 
1316 
1340 

ill! 
1365 
1355 

il 
1345 
1335 
1322 
1290 
1273 
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Table 4» (Continued) 

Time Resistivity Tempera- Resistivity Corrected 
(hours) (//-ohm-cm) ture (°C) correction resistivity 

p to 56.5 C (//-ohm-cm) 

* e 

O 116.00 22.0 
0.20 II6.5O 22.2 
0.45 117.10 22.4 
0.50 II7.5O 22.6 
0.75 II7.9O 23.4 
1.00 118.60 25.0 
1.20 120.20 28.0 
1.55 123.50 33-0 
1.70 124.10 36.O 
2.10 I26.75 43.0 
2.25 I27.8O 45.5 
2.50 130.00 50.0 
2.70 131.45 53-0 
3.00 132.60 56.5 
0.15 132.30 56.6 
0.25 131.80 56.7 
0.50 131.45 56.7 
0.75 131.20 56.5 
1.00 131.05 56.3 
1.50 130.35 54.6 
2.00 I29.I5 52.0 
2.50 128.05 49.5 
4-00 125.05 43-8 
6.00 123.50 38.5 

14.0 130.00 0.00 
13.8 130.30 0.30 
13.5 130.60 0.60 
13.3 130.80 0.80 
13.1 131.00 1.00 
12.8 131.40 1.40 
11.5 131.75 1.75 

.5 132.00 2.00 

.0 132.10 2.10 
5.5 132.25 2.25 
4.5 132.30 2.30 
2.5 132.50 2.50 
1 .0  132 .45  2.45 
0 .0  132 .60  2 .60  
0 .0  132 .30  2 .30  
0 .0  131 .80  1 .80  
0 .0  131 .45  1.45 
0 .0  131 .20  1 .20  
0 .0  131 .05  1.05 
0 .5  130 .85  0 .85  
1 .6  130 .75  0 .75  
2 .6  130 .65  0 .65  
5 .4  130. 45  0. 45  
7 .0  130 .50  0 .50  
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